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This work deals with the active vibration control of beams with smart constrained layer
damping (SCLD) treatment. SCLD design consists of viscoelastic shear layer sandwiched
between two layers of piezoelectric sensors and actuator. This composite SCLD when
bonded to a vibrating structure acts as a smart treatment. The sensor piezoelectric layer
measures the vibration response of the structure and a feedback controller is provided which
regulates the axial deformation of the piezoelectric actuator (constraining layer), thereby
providing adjustable and signi"cant damping in the structure. The damping o!ered by
SCLD treatment has two components, active action and passive action. The active action is
transmitted from the piezoelectric actuator to the host structure through the viscoelastic
layer. The passive action is through the shear deformation in the viscoelastic layer. The
active action apart from providing direct active control also adjusts the passive action by
regulating the shear deformation in the structure. The passive damping component of this
design eliminates spillover, reduces power consumption, improves robustness and reliability
of the system, and reduces vibration response at high-frequency ranges where active
damping is di$cult to implement. A beam "nite element model has been developed based on
Timoshenko's beam theory with partially covered SCLD. The Golla}Hughes}McTavish
(GHM) method has been used to model the viscoelastic layer. The dissipation co-ordinates,
de"ned using GHM approach, describe the frequency-dependent viscoelastic material
properties. Models of PCLD and purely active systems could be obtained as a special case of
SCLD. Using linear quadratic regulator (LQR) optimal control, the e!ects of the SCLD on
vibration suppression performance and control e!ort requirements are investigated. The
e!ects of the viscoelastic layer thickness and material properties on the vibration control
performance are investigated. ( 2002 Academic Press
1. INTRODUCTION

Vibration and noise control of structures are essential to achieve optimal design with
desirable performance. Passive damping treatments have been used extensively in many
structural systems to reduce vibration response, to suppress structural instability and to
eliminate vibration-induced noise. One of the methods to produce signi"cant passive
damping is constrained layer treatments. The constrained layer treatment consists of
0022-460X/02/020227#24 $35.00/0 ( 2002 Academic Press
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a viscoelastic shear layer sandwiched between a constraining cover sheet and the structure
to be damped. The vibration energy is dissipated via cyclic shearing of the viscoelastic layer.
A major advantage of the constrained layer treatments is to reduce the resonance
peaks without signi"cantly altering the structural mass or sti!ness. In addition,
constrained layer treatments are very reliable and robust and hence are extensively used in
aerospace applications. Once the damping treatments are installed, the damping cannot be
adjusted.

Recently, active damping (control) has received increasing attention in the recent times
especially in aerospace industries because of its ability to provide adjustable and signi"cant
damping that traditional passive damping treatments cannot. Number of researchers have
studied the distributed modelling, sensing and active control using piezoelectric materials.
Rao and Sunar [1] have presented an excellent review on this topic. Recently, Chen and
Shen [2] have studied the optimal control of active structures with piezoelectric modal
sensors and actuators. Lam and Ng [3] have studied the active control of composite plates
with integrated piezoelectric sensors and actuators under various dynamic loading
conditions. In spite of numerous successful research activities in this area, active damping
treatments do have their limitations. For example, active damping may become unstable
because of large control gains or non-collocated sensor/actuator con"gurations. Safety and
reliability are not guaranteed for active damping systems, because malfunctions of control
hardware or adverse service environments can cause the systems to lose the active damping
completely or even result in instability. In addition, active damping is di$cult to implement
at high-frequency ranges, because the cut-o! frequency of active damping is limited by
control hardware capability.

From the foregoing discussions, passive and active dampings are complementary.
Passive damping is reliable but not intelligent. In contrast, active damping is intelligent
but not fail-safe. Naturally, a hybrid damping that is both reliable and intelligent is
desirable.

Smart constrained layer damping (SCLD) treatments are hybrid designs that integrate
both active and passive damping through constrained layer treatments. SCLD treatment by
Shen [4, 5] consists of a viscoelastic layer sandwiched between a piezoelectric cover sheet
and the host structure. Similar design suggested by Baz [6, 7] used another piezoelectric
layer between the viscoelastic layer and the host structure which acts as the sensor. The
vibration energy is damped due to shear deformation in the viscoelastic layer. With proper
controller design, the piezoelectric cover sheet is stretched or contracted so that it always
augments the passive shear deformation of the viscoelastic layer, resulting in increased
damping forces acting on the structure. The strains induced in the constraining layer also
develop bending moments, which further controls the vibration. Thus, two mechanisms of
control operate in SCLD. Since energy is always being dissipated, it is more stable than the
purely active control and also is more e!ective than the classical conventional passive
constrained layer damping design (PCLD). In other words, it has the advantages of both the
purely passive and active systems. Studies on SCLD have been carried out by a number of
researchers in recent times [4}10].

In the present work, the active}passive hybrid vibration control performance due to
SCLD treatment is studied on beams. A beam "nite element has been formulated using
Timoshenko theory, including the e!ect of shear deformation and rotary inertia. The
viscoelastic shear layer is modelled using Golla}Hughes}McTavish (GHM) method which
is a time domain approach. LQR optimal control strategy is used to obtain optimal control
gains. The e!ect of the viscoelastic material properties (shear modulus and loss factor) on
the hybrid control performance is studied and an approach to work out a viscoelastic
design space for optimal performance is discussed.
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2. MODELLING AND FORMULATION

A cantilever beam with partially treated enhanced smart constrained layer (Figure 1(a)) is
considered similar to the one in reference [10]. A beam "nite element has been formulated
with Timoshenko's beam theory with the following assumptions: (1) the transverse
displacement w is assumed to be the same in all the layers, (2) the Young's modulus of the
viscoelastic material is negligible when compared with that of the beam and piezoelectric
layer, (3) linear theories are used, (4) perfect continuity without any slip is assumed at the
interfaces, (5) the applied voltage is assumed to be uniform along the beam.

The beam model with the partially covered SCLD treatment (Figure 1(c)) is divided
into two types of elements (1) beam elements with SCLD treatment and (2) plain beam
elements.
Figure 1. (a,b) Cantilever beam with partially covered SCLD treatment; (c) Finite element idealization of
a cantilever beam with partially covered SCLD treatment.
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2.1. BEAM ELEMENTS WITH SCLD TREATMENT

2.1.1. Kinematic relationships

The geometry and deformation of the beam with SCLD treatment is as shown in
Figure 2. The axial displacement of the neutral axis of the piezoelectric layer, the
viscoelastic shear layer and the beam are u

c
, u

s
and u

b
respectively. w and h denote the

transverse displacement and rotation respectively. From Figure 2, the shear strain c of the
viscoelastic shear layer is given by

c"h!t, (1)

where t is the rotational angle of the viscoelastic layer. Assuming perfect bonding
conditions the following kinematics relations could be derived:

u
s
"u

b
!

t
b
2

h!
t
s
2

t, u
c
"u

b
!

t
b
#t

c
2

h!t
s
t, (2, 3)

where t
b
, t

c
and t

s
are the thickness of beam, the piezoelectric layer, and the viscoelastic layer

respectively.

2.1.2. Shape functions

The transverse displacement w, the rotation h, the axial displacement u
b

and the shear
angle c are interpolated by using linear polynomial in x de"ned over the element length ¸

e
.

The local nodal displacements for the SCLD elements (Figure 3) are given by
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Figure 3. Nodal displacements of SCLD-treated beam.

Figure 2. The geometry and deformation of a SCLD-treated beam.
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The axial displacement, transverse displacement and shear angle are expressed in terms of
the nodal displacements by "nite element shape functions as
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where the shape functions are given by
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From equations (1)}(3), we have
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where
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2.1.3. Beam layer

The potential energy of the beam due to bending is
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The potential energy of the beam due to transverse shear is
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where E
b
, G

b
, I

b
and A

b
are Young's modulus of the beam material, shear modulus of the

beam material, moment of inertia and are a of the beam cross-section respectively. ka is the
shear correction factor (usually equal to 5/6). In the evaluation of transverse shear energy,
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reduced integration is used to eliminate shear locking [15]. The potential energy of the
beam due to extension is

1

2
E

b
A

b P
L
e

0
A
Lu

b
LxB

2
dx"

1

2
E
b
A

b
MqNT

e P
L
c

0

[N@
u
]T [N@

u
] dx MqN

e

"

1

2
MqNT

e
[K

ub
] MqN

e
. (12)

The kinetic energy of the beam associated with the transverse motion including rotary
inertia is
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The kinetic energy of the beam associated with axial motion is
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2.1.4. Piezoelectric layer

For one-dimensional structures with uni-axial loading, the constitutive equation of the
piezoelectric materials [11] can be written as
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where D is the electrical displacement (charge/area in the beam vertical direction), E is the
electric "eld (voltage/length along vertical direction), E is the mechanical strain in the
x direction, and p is the mechanical stress in the x direction. SE

11
is the elastic compliance

constant, eT
33

is the dielectric constant, and d
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is the piezoelectric strain constant. Based on
the above constitutive equation, the stress}strain relation is given by
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The virtual work done by the induced strain (force) in the actuator is
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where [P
c
N
e

is the elemental piezoelectric force vector which maps the applied actuator
voltage to induced displacements. <(t) is the voltage applied to the constraining
piezoelectric layer. The potential energy of the piezoelectric layer due to bending is
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The potential energy of the piezoelectric layer due to transverse shear is

1

2
G

c
A

c
ka P

L
e

0
Ah!

Lw
LxB

2
dx"

1

2
G

c
A

c
ka MqNTe P

L
e

0
C
[Nh]
[N@

w
]D

T

G
1

!1H M1 !1N C
[Nh]
[N@

w
]D dx MqN

e

"

1

2
MqNT

e
[K

wcs
] MqN

e
, (20)

where E
c
, G

c
, I

c
and A

c
are Young's modulus of the piezoelectric material, shear modulus of

the piezoelectric material, moment of inertia and area of the piezoelectric layer cross-section
respectively. As mentioned earlier, the shear energy terms are obtained by reduced
integration. The potential energy of the piezoelectric layer due to extension is
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where A
c
is the area of cross-section of the piezoelectric layer. The kinetic energy of the

piezoelectric layer associated with transverse motion is
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where o
c
is the density of the piezoelectric material. The kinetic energy of the piezoelectric

layer associated with axial motion is
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2.1.5. <iscoelastic layer

The kinetic energy of the viscoelastic layer associated with transverse motion is
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where o
s
, I

s
and A

s
are the density, moment of inertia and area of cross-section of the

viscoelastic layer. The kinetic energy of the viscoelastic layer associated with axial motion is

1

2
o
s
A

s P
L
e

0
A
Lu

s
Lt B

2
dx"

1

2
o
s
A

s
MqR NT

e P
L
e

0 C
[N

u
]

[Nh]
[Nc]

D
T

G
1

!t
b
`t

s2
t
s2

H G1 !

t
b
#t

s
2

t
s
2H C

[N
u
]

[Nh]
[Nc] D dx MqR N

e

"

1

2
MqR NT

e
[M

us
] MqR N

e
. (25)

For one-dimensional structures, the constitutive equation for viscoelastic materials could
be represented in the following Stieltjes integral form [10]
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where G(t) is the relaxation function of viscoelastic material (the stress response to
a unit-step strain input). This stress relaxation represents energy loss from the material and
hence damping.

The Golla}Hughes}Mctavish (GHM) method [13, 14] is employed to analyze equation
(26) in the time domain [10]. The GHM method represents the material modulus function
as a series of mini-oscillator terms in the Laplace domain [12]

sGI (s)"i C1#
n
+
r/1

a
r

s2#2f)
r
uL

r
s

s2#2fK
r
u(

r
s#uL 2

r
D. (27)

The factor i corresponds to the equilibrium value of the modulus*the "nal value of the
relaxation function G(t). Each mini-oscillator term is a second order rational function
involving three positive constants Ma

r
, u(

r
, f)

r
N which are weighting on the GHM dissipation

co-ordinate, the natural frequency in GHM dissipation co-ordinate and the damping factor
in GHM dissipation co-ordinate respectively. These constants govern the shape of the
modulus function over the complex s-domain. the GHM parameters i and a can be related
to the shear modulus and the loss factor of viscoelastic materials. From a single-term GHM
expression, we can obtain the following time-domain pair:
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where z is the dissipation co-ordinate which may be expressed as follows:
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The virtual work done by the viscoelastic layer is therefore,
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and
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The above formulation will ensure the system sti!ness matrix to be symmetric.

2.1.6. Mass, damping and sti+ness matrices of SC¸D-treated elements

The "nal mass, damping, and sti!ness matrices for a single SCLD element corresponding
to MqN

e
, can be expressed as follows:
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The matices corresponding to both MqN
e

and MzN are [K
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]. The matrices

corresponding to MzN are [M
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], [C
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] and [K
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The mass and sti!ness matrices have a dimension 6]6 for the elements in the plain beam
regions, without piezoelectric, viscoelastic layers and edge elements. The virtual work done
by the distributed external disturbance force is given by
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It is usually more convenient to de"ne nodes at the point of application of any discrete
forces, and to consider the e!ects of such forces at the global level.

3. EQUATIONS OF MOTION OF BEAM WITH PARTIALLY COVERED
SCLD TREATMENT

Using Hamilton's principle one can write
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respectively. From equation (43), we can write the equations of motion for an element as
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The elemental dissipation co-ordinates MzN
e
are considered as additional degrees of freedom

per node. The global equations of motion can be obtained by assembling the elemental
equations and are given by
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where MqN, MqR N and MqK N are the global displacement, the velocity and the acceleration vectors
respectively (including GHM dissipation co-ordinates). [M], [C] and [K] are the mass,
damping and sti!ness matrices. MP

c
N is the piezoelectric force vector which maps the applied

actuator voltage to the induced displacements and M f
d
N is the vector representing

disturbance forces. Note that the piezoelectric-induced force results in boundary actions at
the ends of the piezoelectric layer due to the force cancellation at common nodes, when
continuity between elements is enforced.

In the present study, in addition to the viscoelastic damping as in the above formulation,
internal structural damping is also included via Rayleigh damping as

[C
b
]"aL [M

b
]#bK [K

b
], (46)

where [M
b
] and [K

b
] are submatrices of [M] and [K], respectively, from which the parts

corresponding to the GHM dissipation co-ordinates are removed. Constants aL and bK can be
usually obtained from experimental results [15].

4. MODAL ANALYSIS AND STATE-SPACE FORMULATION

For most structural systems under practical loading conditions, the vibration response is
governed by only the "rst few modes. Hence, mode superposition method is used to obtain
an approximate reduced order dynamic model of the system with uncoupled equations of
motion in modal co-ordinates. Assuming that the system response is governed by the "rst
r modes of the system, the displacement Mq (t)N could be approximated by

MqN+
r
+
j/1

/
j
g
j
"[UK ] MgN, (47)

where [UK ] is the truncated modal matrix (of the associated undamped free-vibration
problem), given by

[UK ]"[/
1
,2 , /

r
] (r(n) (48)

and [g(t)N are the modal co-ordinates, and r is the number of retained modes.
Using the approximation for MqN given in equation (48), the equation of motion (45) could

be transformed to the reduced modal space from as below.

[MM ] MgK N#[CM ]Mg5 N#[KM ]MgN"MPM
c
N M< (t)N#M fM

d
N, (49)

where

[MM ]"[UK ]T [M] [UK ], [CM ]"[UK ]T [C] [UK ], [KM ]"[UK ]T [K] [UK ]

are (r]r) diagonal matrices because of the orthogonality of the mode shapes (eigenvectors)
with respect to the mass and sti!ness matrices, and

MPM
c
N"[UK ]T [P

c
N, M fM

d
N"[UK ]T M f

d
N.

Equation (49) can be written as

[gK ]"![MM ]~1[KM ] MgN![MM ]~1 [CM ] Mg5 N#[MM ]~1 MPM
c
N M<(t)N#[MM ]~1 M fM

d
N . (50)
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Introducing the state-space variable [m] as

[m]"G
g5
gH . (51)

The system dynamics given by equation (50) can be written in a state-space from as

[m0 ]"[A]MmN#[B]MuN#[BK ] Mu
d
N, (52)

where [A] is the system matrix, [B] is the control matrix and [BK ] is the disturbance matrix,
which are given by

[A]"C
![MM ]~1 [CM ]

[I]

![MM ]~1 [KM ]
[0] D, [B]"C

[MM ]~1 MPM
c
N

[0] D, [BK ]"C
[MM ]~1 M fM

d
N

[0] D ,

where Mu
d
N is the disturbance input vector and MuN"<(t) is the control input. The output

equation could be written in physical co-ordinates as

MyN"[C
o
] MqN, (53)

where [C
o
] is the output matrix. On transforming to modal co-ordinates and then to

state-space co-ordinates, equation (53) becomes

MyN N"[[0], [C
o
][UK ]] MmN"[CM

o
] MmN. (54)

The state-space model of the system dynamics represented by equations (53) and (54) is used
for vibration control study. It could be noted that the models of PCLD and purely active
systems could be obtained as a special case of SCLD model by imposing appropriate
assumptions.

5. OPTIMAL CONTROL LAW

Linear quadratic regulator theory (LQR) optimal control theory [16, 17] is used to
determine the active control gains. The cost function is given by

J"P
=

0

(MyN NT [Q] MyN N#MuNT [R] MuN) dt, (55)

where [Q] and [R] are the semi-positive-de"nite and positive-de"nite weighting matrices
on the outputs and control inputs respectively. In our case, larger (relatively) elements in
[Q] mean that we demand more vibration suppression ability from the controller, while
larger R elements mean one's interest is in limiting the control e!ort (voltage). Assuming full
state feedback, the control law is given by

MuN"![K
c
] MmN, (56)

where [K
c
] is the control gain given by

[K
c
]"[R]~1 [B]T [P]. (57)

[P] satis"es the Riccati equation

[A]T[P]#[P][A]![P][B][R]~1[B]T[P]#[C
0
]T [Q] MC

0
]"0. (58)

The closed-loop system dynamics is given by

Mm0 N"([A]![B][K
c
]) MmN#[BK ] Mu

d
N"[A

cl
]MmN#[BK ] Mu

d
N. (59)



TABLE 1

Material properties and other system parameters

aL 0)64 d
31

!175]10~12 m/V
bK 1)2]10~6 k

eq
108 N/m2

E
b

7)1]1010 N/m2 ¸ 300 mm
E
c

6)49]1010 N/m2 x
1

30 min
i 5]105 N/m2 x

2
130 mm

o
b

2700 kg/m3 t
b

3 mm
o
c

7600 kg/m3 t
c

1 mm
o
s

1250 kg/m3 t
s

0)25 mm
a 1)0 b 15 mm
u( 1000 rad/s Q 1011
1L 4)0 R 1)0

Figure 4. Tip displacement and actuator voltage of the beam with purely active control.
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6. RESULTS AND DISCUSSION

For vibration control studies, a SCLD-treated cantilever beam of dimensions
300 mm]15 mm]3 mm is considered with the viscoelastic layer and piezoelectric cover
sheet of 100 mm]15 mm at 30 mm from the "xed end. Table 1 indicates the system
parameters of the case studies considered for the di!erent cases unless otherwise speci"cally
stated. An impact load of 1)0N is applied at the free end of the cantilever beam for 1ms
duration. Controller is assumed to be switched on after 0)1 s. Figures 4}7 show the vibration
control performance and control e!ort for purely active case and PCLD and SCLD for
di!erent values of i ("nal value of the relaxation function of viscoelastic material which is
also related to shear modulus). It could be observed from the "gures that with higher i we
could achieve better vibration control performance. In the present case with i"108, we
could achieve vibration control performance matching the purely active case. It can be
noted that the actuator voltages shown in Figures 4}7 are of the order of 100}150 V and the
thickness of the PZT actuator is 1 mm. Hence, the "eld applied to the actuator is
100}150V/mm which is less compared to the breakdown voltages for such PZT materials.
Figure 8 indicates the vibration control performance of the SCLD-treated beam subjected
to a sinusoidal load of 0)1 sin(250t) at the tip, the control parameters Q and R being 1012

and 1 respectively. In this case it can also be noted that with i"108, we could achieve
vibration control performance matching the purely active case. In this case, the controller is
switched on after 2 s. It can be noted that, the beat-like phenomenon which is observed in
the uncontrolled case is due to the superposition of the transient response which is at the
natural frequency (in this case 206 rad/s) and the steady state response which is 250 rad/s.



Figure 5. Tip displacement and actuator voltage of the beam with PCLD and SCLD (with i"106 N/m2),
when subjected to an impact load of 1)0 N at the tip.

Figure 6. The frequency response of the beam with passive network (axis Y*absolute displacement, mm; axis
X*frequency, Hz).
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In order to study in detail the e!ect of the shear modulus (related to i), the loss factor
(related to a) and the thickness of the viscoelastic layer (t

s
) on the vibration control

performance, let us consider three aspects of the SCLD-treated systems, such as



Figure 7. Tip displacement and actuator voltage of the beam with PCLD and SCLD (with i"108 N/m2),
when subjected to an impact load of 1)0 N at the tip.
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passive damping ability, hybrid (combined) active}passive action ability and active action
ability.

6.1. PERFORMANCE AND CONTROL EFFORT INDICES

To establish vibration control performance and control e!ort indices, the system is
assumed to be subjected to a broadband extelrnal disturbance which is a white-noise
process with zero mean.

E[u
d
(t)]"0, E[u

d
(t)uT

d
(q)]";

d
(t)d(t!q). (60, 61)

The system response consists of a state vector with zero mean and a variance given by the
solution [P

l
] of the Lyapunov equation

[A][P
l
]#[P

l
][A]T#MBK N;

d
MBK NT"0, (62)

where

[P
l
]"E [Mq(t)N Mq (t)NT]. (63)

The output co-variance matrix can be written as

="E[yyT]"E [[[C
o
]MqN] [[C

o
] MqN]T]"E [[C

o
] MqN MqNT [C

o
]T]

"([C
o
]E[MqN MqNT] [C

o
]T"[C

o
][P

l
] [C

o
]T. (64)

In this study, covariance response to white noise is observed. A random disturbance with
intensity (2)5]10~5 N2/(rad/s)) is applied to the beam at the free end and the output MyN is
chosen to re#ect the beam tip displacement.



Figure 8. Tip displacement of the beam with purely active and SCLD (with i"106, 107 and 108 N/m2), when
subjected to a harmonic load of 0)1 sin (250t)N at the tip.
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To obtain further insight, we de"ne the standard deviations of the output vibration
amplitude and the required voltage as p

w
and p

v
respectively. Here p

w
is an index

representing the vibration suppression performance (the smaller p
w
, the better the

performance) and p
v
is an index representing the required control e!ort.

6.2. PASSIVE DAMPING ABILITY

For a purely passive case (< (t)"0), let pP
ow

be the vibration suppression performance
index for a case without viscoelastic damping (i.e., by removing GHM dissipation



Figure 9. Standard deviation of tip displacement (pP
w
) versus i for PCLD case.

Figure 10. Passive damping ability (I
p
) versus i.
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co-ordinates, retaining the viscoelastic sti!ness contribution) and pP
dw
be the value with the

viscoelastic damping. i.e., pPo
w

and pPd
w

are obtained with the same system static sti!ness for
given i. Figure 9 shows the variation of pP

w
values with i. It can be observed from the "gure

that, pPo
w

remains constant and pPd
w

decreases with increase in i. This indicates that the
increase in the shear modulus increase the viscoelastic passive damping ability.

The passive damping ability of the viscoelastic material can be quanti"ed with an index I
p

de"ned as

I
p
"

pPo
w
!pPd

w
pPo
w

. (65)

Here (pPo
w
!pPd

w
) can be considered as the vibration amplitude reduction due to viscoelastic

damping. The variation of I
p

with i is illustrated in Figure 10. It can be noted that
viscoelastic passive damping ability on the SCLD system increases with i upto certain level
and afterwards decreases with further increase in i.



Figure 11. Standard deviation of tip displacement (p
w
) versus i for a hybrid case with both active and passive

actions.

Figure 12. Standard deviation of tip actuator voltage (p
v
) versus i for a hybrid case with both active and passive

actions.
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6.3. HYBRID ACTIVE}PASSIVE ACTIONS

The foregoing discussion revealed the capability of the SCLD-treated system in providing
a signi"cant level of passive damping ability. Now let us consider the overall closed-loop
system performance combining the active and passive actions. For this study, a while-noise
disturbance with zero mean and with variance 2.5]10~5 N2/(rad/s) is applied at the tip
(free end) of the beam and the output is chosen to be the transverse displacement of the
beam at the tip. This results in the corresponding state-space equations to be
single-input}single-output system (SISO) with the weighting matrices Q and R as scalars.

The structure response index p
w

and corresponding control e!ort index p
v
are shown in

Figures 11 and 12. It can be noted that, in this example, the SCLD con"guration with lower
value of i needs more control voltage while achieving less vibration reduction when
compared to a purely active system. With increase in the i the vibration amplitude and the
required control e!ort decreases. Moreover, with su$ciently large i, SCLD marginally



Figure 13. Vibration suppression ability per control e!ort (I
ap

/p
v
) versus i for a hybrid case with both active

and passive actions.
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outperforms the purely active system. Another index which represents the active}passive
hybrid action quantitatively, I

ap
, could be de"ned as

I
ap
"

pP
ow
!p

w
pP

ow

]100. (66)

Here, (pPo
w
!p

w
) can be considered as the vibration amplitude reduction due to

contributions from the active}passive hybrid actions. (I
ap

/p
v
) represents the vibration

suppression ability per control e!ort, which represents the e!ectiveness of the
active}possible hybrid actions. The (I

ap
/p

v
) are plotted for various values of i in Figure 13.

The i value at which (I
ap

/p
v
) value of SCLD is larger than that of a purely active case will

yield a design that outperforms both purely active and passive designs. The i value at which
(I

ap
/p

v
) value is crossing the dashed line could be de"ned as i

cr
. If the viscoelastic shear layer

with i more than i
cr

is provided in SCLD design, it will outperform the purely active and
passive designs. However, in general, large values of i are di$cult to achieve and maintain
in most viscoelastic materials.

It can be noted that the shape of these curves depends on the control parameters Q and
R chosen. For instance, as the value of Q increases values of i

cr
(the value of i related to

shear modulus) required for the SCLD design to outperform purely active case, will
obviously increase, because we demand more vibration suppression which demands more
active action. This is clearly indicated in Figures 14}16. But qualitatively the dependence of
i and a on the control performance is similar for various values of Q and R.

The vibration response index p
w

for various values of a (related to loss factor) for PCLD
and SCLD cases are indicated in Figure 17. It can be seen that it is desirable to let the value
of a as large as possible to achieve better vibration control. Vibration suppression ability
per control e!ort (I

ap
/p

v
) versus i and a is plotted in Figure 18. The parametric region in

which the I
ap

/p
v

value of SCLD design is larger than that of purely active design gives
a design that outperforms the purely active and passive designs. Figure 19 shows the
variation of p

w
with respect to the viscoelastic layer thickness (t

s
). It can be noted that the

larger the thickness of the viscoelastic layer the lesser will be the vibration control
performance. This is due to the reduction in the transmissibility of the active action from the
smart layer to the host structure by the viscoelastic layer. This can be clearly brought out by
de"ning another parameter called the active action authority (I

a
).



Figure 14. Standard deviation of tip displacement (p
w
) versus i for a hybrid case with both active and passive

actions for di!erent values of control parameters Q and R. Note: The dotted lines indicate the corresponding purely
active cases.

Figure 15. Standard deviation of the actuator voltage (p
v
) versus i for a hybrid case with both active and

passive actions for di!erent values of control parameters Q and R. Note: The dotted lines indicate the
corresponding purely active cases.
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6.4. ACTIVE ACTION AUTHORITY

To study the active action authority without damping e!ect, the structure is statically
deformed by a DC voltage input to the actuator. The beam de#ection at the tip is further
transformed to an equivalent point load by multiplying it by the equivalent beam sti!ness at
the tip. The transmitted force per unit input voltage is then normalized with respect to that
of the purely active system, which is de"ned as

I
a
"A

w
v

w
F
BNA

w
v

w
F
B
PA

, (67)



Figure 16. Vibration suppression ability per control e!ort (I
ap

/p
v
) versus i for a hybrid case with both active

and passive actions for di!erent values of control parameters Q and R. Note: The dotted lines indicate the
corresponding purely active cases.

Figure 17. Standard deviation of tip displacement (p
w
) versus a for a hybrid case with both active and passive

actions (for i"5)0]105 N/m2).
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where w
v
is the static de#ection at the free end when unit DC input voltage is applied to the

actuator, and w
F

is the beam tip de#ection when unit force in transverse direction is applied
to the beam at the free end. The subscript PA refers to the purely active system. Higher I

a
indicates higher authority of the active action.

The di!erence in I
a

can be due to two factors, namely the transmission path (the path
along which the active action is transmitted to the host structure) and the o+set (the distance
between the neutral axis of the beam and that of the piezoelectric cover sheet).

The I
a
values for di!erent i are plotted against t

s
in Figure 20. It may be noted that purely

active system is the case with t
s
"0. From the "gure, we see that I

a
increases with increasing

i for the same t
s
(same o!set). This shows that the shear modulus (proportional to i) of the

viscoelastic material is a key factor in the active action authority of the SCLD
con"guration. It is also illustrated that the I

a
value for typical i@s(i(108 Pa) reduces

signi"cantly as t
s
increases from 0. This phenomenon indicates that the active action is

degraded by the viscoelastic layer. The reason for this is that the soft viscoelastic layer



Figure 18. Vibration suppression ability per control e!ort (I
ap

/p
v
) versus i and a.

Figure 19. Standard deviation of tip displacement (p
w
) versus t

s
for a hybrid case with both active and passive

actions (for i"5)0]105 N/m2).

Figure 20. Active action authority (I
a
) versus thickness of the viscoelastic shear layer (t

s
) for di!erent values i.
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TABLE 2

Comparison of the beam responses and control e+ort requirements for a broadband excitation

Standard deviation of Beam response Control voltage
p
w

(mm) p
v
(V)

PCLD (i"106 N/m2) 1)050000 *

SCLD (i"106 N/m2) 0)586009 134)29471
PCLD (i"107 N/m2) 0)862403 *

SCLD (i"107 N/m2) 0)289847 82)53952
PCLD (i"108 N/m2) 0)899485 *

SCLD (i"108 N/m2) 0)227955 68)85565
Purely active 0)230805 73)21550
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reduces the control authority being transmitted (transmissibility between the voltage input
to the actuator and the force/moment applied on the structure) from the piezoelectric
actuator to the host structure. For such cases, the active action authority decreases with
increasing viscoelastic material thickness even though the o!set distance is increased.

6.5. RESPONSE TO BROADBAND EXCITATION

To indicate the importance of the SCLD design over the PCLD and purely active
designs, the standard deviation of the beam response and the required control voltage under
broadband disturbance are shown in Table 2. It can be noted that there is improved
performance (i.e., more vibration reduction) in the case of the SCLD design when compared
to the PCLD design. With the SCLD design having viscoelastic layer of su$cient shear
modulus (related to i), more vibration reduction can be obtained with less control e!ort
than the purely active design. However, large i values (i'108) are in general too high to
achieve and maintain in most viscoelastic materials.

7. CONCLUSIONS

A "nite element model has been developed for the beam-like structure with partially
covered, smart constrained layer damping (SCLD) treatment. The mechanics of the
viscoelastic material layer is modelled using GHM approach, which is a time domain
formulation. LQR optimal control has been applied to study the vibration control
performance. It is observed that the SCLD with su$ciently large shear modulus (related to
i) could outperform both PCLD and purely active con"gurations. We could also estimate
the required critical i necessary for the SCLD systems. However, as large values of i are
di$cult to achieve and maintain in most viscoelastic materials, a compromise has to be
made in the choice of suitable i keeping in mind that SCLD designs are more reliable,
robust and fail-safe when compared to purely active designs. It is possible to work out the
parametric design space (as in Figure 18) for the SCLD with optimal performance needs.
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APPENDIX A: NOMENCLATURE

[A] open-loop system matrix
[A

cl
] closed-loop system matrix

A
b
, A

c
, A

s
cross-sectional are a of beam, piezoelectric layer and viscoelastic material
respectively

[B] control matrix
[BK ] disturbance matrix
b width of the beam
[C] global damping matrix
[C

z
] damping matrix corresponding the z dissipation co-ordinate of viscoelastic

material
[C1 ] global damping matrix in modal co-ordinates
[C

b
] Rayleigh damping matrix

[C
o
] output matrix

D electrical displacement
d
31

piezoelectric constant
E electric "eld
E
b
, E

c
Young's modulus of beam material and piezoelectric material respectively
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MP
c
N control force vector

MPM
c
N control force vector in modal co-ordinates

M f
d
N disturbance force vector

M fM
d
N disturbance force vector in modal co-ordinates

G relaxation function of viscoelastic material
G

b
, G

c
shear modulus of the beam material and piezoelectric material respectively

I
b
, I

c
, I

s
moment of inertia of beam, piezoelectric constraining layer and viscoelastic shear
layer respectively

[K] global sti!ness matrix
[K

z
] sti!ness matrix corresponding the z dissipation co-ordinate of viscoelastic

material
[K

qz
] sti!ness matrix coupling z dissipation co-ordinate of viscoelastic material and

displacement co-ordinates of the beam
[KM ] global sti!ness matrix in modal co-ordinates
k
eq

equivalent sti!ness of edge element
¸ beam length
¸
e

element length
[M] global mass matrix
[M

z
] mass matrix corresponding the z dissipation co-ordinate of viscoelastic material

[MM ] global mass matrix in modal co-ordinates
MqN global displacement vector
SE
11

elastic compliance constant of piezoelectric materials
t time
t
b
, t

c
, t

s
thickness of beam, piezoelectric constraining layer and viscoelastic shear layer
respectively

MuN control input vector
Mu

d
N disturbance input vector

u
b
, u

c
, u

s
axial displacement of beam, piezoelectric layer and viscoelastic layer respectively

< applied actuator voltage
w beam transverse displacement
[N

w
],[Nh],[Nu

],[Nc] shape function matrices for transverse displacement, rotation, axial displacement
of the beam and rotation of the viscoelastic layer

x position co-ordinate along beam and element length
[N

z
] shape function matrix for dissipation co-ordinate

x
1

left end of SCLD
x
2

right end of SCLD
MyN output vector
z dissipation co-ordinate
a weighting on GHM dissipation co-ordinate (related to loss factor)
c shear strain of viscoelastic material
E mechanical strain of viscoelastic material
eT
33

dielectric constant of piezoelectric material
i "nal value of G(t) (related to shear modulus)
f damping factor in GHM dissipation co-ordinate
o
b
, o

c
, o

s
mass density of beam material, piezoelectric material and viscoelastic material
respectively

q mechanical shear stress
h rotation of the beam
t rotation of the viscoelastic layer
uL natural frequency of GHM dissipation co-ordinate
/) truncated modal matrix
g modal co-ordinates
ka shear correction factor ("5/6)
[K

c
] gain matrix

MmN state vector
I
a

active action authority index
I
p

passive damping ability index
I
ap

active}passive damping ability index
p
w

standard deviation of the transverse displacement
pP
w

standard deviation of the transverse displacement for a passive case
p
v

standard deviation of the control e!ort
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